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Abstract

The quantum Liouville equation in the Wigner representation is

solved numerically by using Monte Carlo methods. For incremental

time steps, the propagation is implemented as a classical evolution in

phase space modi�ed by a quantum correction. The correction, which

is a momentum jump function, is simulated in the quasi-classical

approximation via a stochastic process. In this paper the technique,

which is developed and validated in two- and three-dimensional mo-

mentum space, extends an earlier one-dimensional work. Also, by

developing a new algorithm, the application to bound state motion in

an anharmonic quartic potential shows better agreement with exact

solutions in two-dimensional phase space.

I. Introduction

Nuclear interaction theory is formulated in the language of quantum mechanics, and hence

the development of general methods of solutions to quantum dynamics will provide useful tools

for application to a large class of problems in nuclear many-body theory. Di�erent approaches

exist to the formulation of this complex problem, and attempts toward solutions at various

levels of approximations are ongoing. The time-independent approach based on the Lippmann-

Schwinger equation, for instance, is useful for describing systems with well-de�ned incident initial

states (ref. 1). Similarly, the time-independent classical transport theory provides a method for

calculating the uence of particles as a superposition of sharply de�ned incident states under

steady-state conditions (ref. 2). In real-life situations in deep-space radiations, for example,

sporadic bursts of radiationmay be encountered during which interactions and scattering proceed

as fast transient events. This is in contrast with the slow variation of background space radiation

for which a time-independent approach to study the e�ects of radiation on spacecraft is indicated.

With this report we begin the development of a practical numerical code that is designed for the

study of time-dependent nuclear scattering and interaction for transient thermodynamic wide

spectrum radiation that is aimed toward application to the NASA radiation protection program

for space travelers.

The density operator formalism of quantum dynamics (ref. 3) provides a suitable framework

for the study of thermodynamic systems. In the Wigner representation (refs. 4{7), the dynamic

equation of the density operator, given by the quantum Liouville equation, is transformed into

ordinary functions and operators in phase-space coordinates. In a series expansion in powers of

Planck's constant �h, the equation then provides an intuitively appealing reduction to the classical

Liouville equation in the classical limit. Also, the more familiar equations appearing in nuclear

scattering and heavy-ion collision theory, such as the hydrodynamic equations (see refs. 5 and 8)

and the Boltzmann-Vlasov equations, may be extracted from the Wigner formalism. Because

many of the cross sections used in the space program are derived from Monte Carlo simulation

of the classical Boltzmann transport theory (ref. 9), the quantum correction to classical theory

is of interest to NASA.

In this paper Monte Carlo methods are applied to solve the quantum Liouville equation in

the Wigner representation (refs. 10 and 11). The equations are in a noncovariant form and apply

to single-particle dynamics only. The time evolution is treated as a stochastic process, as seen

in references 7 and 10{12. In an e�ort to simplify the problem, only �rst-order quantum e�ects

are considered; and in this approximation the solution is applicable to quasi-classical systems

(refs. 11, 13, and 14) that exhibit smoothly varying momentum distribution typical of highly

mixed thermodynamic systems. In general, however, the �rst-order quantum correction may



not be su�cient and may, in some instances, even require the entire series summation (refs. 15
and 16). For the scattering of a highly collimated beam, for example, higher order terms become
increasingly signi�cant. Therefore, the method pursued in this work will hopefully complement
the other approaches mentioned earlier.

A generalized Monte Carlo method was introduced in references 10 and 11. This paper
extends that work to two and three dimensions, and a new algorithm is developed that gives
improved results for the application considered.

In section II, quantum dynamics in the Wigner representation is reviewed and the stochastic
techniques are developed. In section III, the technique is validated independently of the
classical motion by comparing it with analytic solutions in the one-, two-, and three-dimensional
momentum space. In section IV, an application to bound state motion within an anharmonic
quartic potential in two-dimensional phase space is considered and the algorithm is discussed.
In section V, the results and a discussion are presented, and in section VI, some concluding
remarks and future applications are briey indicated.

II. Theory

Quantum Liouville Equation (QLE)

The density operator b� of a quantum thermodynamical system is given by

b� =X
m

Pmj m ><  mj (1)

where Pm is the probability for an ensemble element to be in eigenstate j m >. The time
evolution of b� is the quantum Liouville equation,

i
@b�
@t

=
h bH;b�i (2)

where t denotes time, bH is the Hamiltonian, and �h = 1. Equation (2) has the formal solution

b� (t) = e�i
bHtb� (0) eibHt (3)

Because the components of bH are usually noncommutative, this form is di�cult to solve in
practice. An intuitively appealing solution can be obtained by taking the Wigner transform of
the QLE, which provides a series expansion in �h and reduces to the classical Liouville equation
in the classical limit, �h! 0.

Wigner Representation of QLE

A few basic properties of the Wigner transform are now reviewed. The Wigner transform of
an operator, bO is de�ned by

Ow (x;p; t) =

Z
1

�1

dy eip�y < x�
1

2
y
���bO (t)

���x+ 1

2
y > (4)

which is a simultaneous representation in both position coordinates x and momentum coordi-
nates p. The Wigner transform for the density operator b� is

fw (x;p; t) =

Z
1

�1

dy eip�y < x�
1

2
y jb� (t)jx+

1

2
y > (5)
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and is called the Wigner distribution function (generally de�ned with a normalization fac-
tor (2�)�3). As an example, the Wigner transform of the density operator corresponding to
a minimum wave packet de�ned by

 (x) =
1�

2��2
�3=2 exp

"
�ip0 � x�

(x� x0)
2

4�2

#
(6)

is given by

fw (x;p; t) =

Z
1

�1

dy eip�y �
�
x�

1

2
y

�
 

�
x+

1

2
y

�

= 2 exp

"
�2�2 (p� p0)

2 �
(x� x0)

2

2�2

#
(7)

The Wigner function has many analogs with the classical distribution function. For example,

(2�)�3
Z
dp fw (x;p; t) =< x jb�jx > (8)

(2�)�3
Z
dx fw (x;p; t) =< p jb�jp > (9)

(2�)�3
Z
dx dp fw (x;p; t) = 1 (10)

and the expectation value of an observable bO is given by

< bO (t) >= (2�)�3
Z
dx dpOw (x;p; t)fw (x;p; t) (11)

However, even though fw(x;p; t) is real (that is, f
�
w = fw) it cannot strictly be a distribution

function because it can have negative values, and therefore the Wigner function should at most
be considered as an auxiliary function that is useful for calculating thermodynamic averages.

The Wigner transform of the quantum Liouville equation becomes

@fw

@t
(x;p; t) = �2Hw sin

�
�

2

�
fw (x;p; t) (12)

in which Hw is the Wigner transformed Hamiltonian and � is the Poisson bracket operator given
as

� =
 �
rp �

�!
rx �

 �
rx �
�!
rp (13)

where the arrows indicate the direction of action of the operator. Expanding the sine term gives
the series expansion

@fw

@t
(x;p; t) =

�
�Hw�+

1

24
Hw�

3
�

1

1920
Hw�

5 + : : :

�
fw (x;p; t)�

�
Lc + Lq

�
fw (x;p; t) (14)

where Lc = Hw� is the classical Liouville operator and �Lq (which is equal to all higher order
terms) is the quantum operator. The solution to equation (14) is given by

fw (x;p; t) = e�(Lc+Lq)tfw (x;p; 0) (15)
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For small increments of time, equation (15) becomes

fw (x;p;�t) = e�Lq�te�Lc�tfw (x;p;0) + O
�
�t2

�
(16)

Hence, in�nitesimal time motion can be described in terms of successive classical and quantum
evolutions in which the classical operator transforms the function to

fwc (x;p;�t) = e�Lc�tfw (x;p; 0) (17)

and the quantum operator acts on fwc, thus giving

fw (x;p;�t) = e�Lq�tfwc (x;p;�t) (18)

These expressions are di�cult to evaluate analytically for arbitrary functions. Hence, Monte
Carlo methods are applied with the advantage that the only analytic evaluation required is that
for the action of the operators on a delta function. Explicit expressions for the operators Lc
and Lq for a Hamiltonian operator of the form

bH =
bp2
2m

+ V (bx) (19)

with Wigner transform

Hw (x;p) =
p2

2m
+ V (x) (20)

(where x and p are now variables and not operators) are obtained as

Lc =
p

m
�
�!
rx �

�
�!
rxV

�
�
�!
rp (21)

Lq =
1

24
V (x)

�
 �
rx �
�!
rp

�3
+ : : : (22)

The action of Lc on the delta function is standard. The action of Lq on the delta function is
now evaluated explicitly in the quasi-classical limit for a central potential V (r) with r = jx� xij

and,

Lq =
1

24
V (r)

�
 �
rx �
�!
rp

�3
(23)

Expanding Lq in terms of the radial component p0 and the perpendicular components p1
and p2 of the momentum (appendix A) gives

Lq = Lq1 + Lq2 (24)

where

Lq1 =
aL

2
@3p0

+ aT @p0 @
2
p1

(25)

Lq2 =
aL

2
@3p0

+ aT @p0 @
2
p2

(26)

with

aL =
1

24

@3V

@r3
(27)
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aT =
1

8

@

@r

�
1

r

@V

@r

�
(28)

Consider �rst the action of Lq1 on the delta function. (Similar arguments hold for Lq2.) It
acts on the p0 and p1 components only, thus giving

J (p� pi) � e�Lq1t� (p � pi)

= � (p2 � p2i) e
�Lq1

t� (p0 � p0i) � (p1 � p1i) (29)

A change of variables to v0 = p0 + p1 and v1 = p0 � p1 reduces the expression to a product
of one-dimensional forms. The operator Lq1 transforms into

Lq1 = a @3v0 + a @3v1 (30)

where
a =

aL

2
+ aT

2 = 2aL (31)

with

 =

�
3aL
2aT

�
1=2

(32)

and equation (29) transforms into

J (p� pi) ! 2� (p2 � p2i) e
�at@3

v0 � (v0 � v0i) e
�at@3

v1@ (v1 � v1i) (33)

where 2 is the Jacobian of the transformation for the delta functions.

The expressions to be evaluated are of the typical one-dimensional form with at replaced
by a. Thus,

Ai (a; p� pi) = e
�a@3p � (p� pi)

=
1

2�

Z
1

�1

dy eiay
3
+ipy (34)

where Ai is recognized as the Airy function. Depending on the sign of a, the function decreases
exponentially along one direction and is oscillatory along the other with a slow decay in amplitude
and increasing frequency.

Monte Carlo Method

In a Monte Carlo procedure a sample set of test points is selected to represent the initial
positive valued function. Thus,

fw (x;p; 0) �
(2�)3

N

NX
i=1

�i� (x� xi) � (p� pi) (35)

where �i = 1 is the sign of the test point because, as noted above, fw(x;p; t) may be positive
or negative. The classical propagation is a canonical contact transformation that transports the
delta functions to new positions along deterministic tra jectories so that

fwc (x;p;�t) =
(2�)3

N

X
i

�i� (x� xci) � (p� pci) (36)
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where xci and pci are evaluated via Hamilton's equations of motion

dxi

dt
=

@H

@pi

dpi

dt
= �

@H

@xi

9>>>=
>>>;

(37)

To implement the quantum correction as given by equation (34), a strong damping for the Airy
functions is useful. (Details for only the one-dimensional quantum jump function are discussed
here. For higher dimensions see section III.) Now the phase space assumes a graininess due to
the delta function representation; that is, the larger the number of representative points, the
�ner the grain structure. For a coarse-grained analysis of the quantum correction, note that the
increasing rapidity of the oscillation of the Airy function at large momentum distances implies
a net cancellation. Hence, to speed simulation, a grain size is introduced into the �(p� pi) term
to produce a faster damping rate for the function. This is achieved by approximating the delta
function by a narrow-width Gaussian function, which modi�es the Airy function to

J� (a; p� pi) = e
�at@3

p�� (p� pi) (38)

where ��(p� pi) is the Gaussian function of width �. The expressions for the modi�ed Airy
functions J� are given in appendix B.

The corresponding quantum jump function is de�ned as

J� (a; p� pi) = J� (a; p� pi)� �� (p� pi) (39)

Figure 1(a) illustrates a typical Gaussian-modi�ed Airy function, and �gure 1(b) illustrates the
corresponding quantum jump function J�(a; p), which is shown as \J" in the �gures.

The jump function is implemented via a stochastic simulation. To this end, let J
�
correspond

to the positive and negative segments of the function J�. Partial integration easily shows that,

Z
J� (a; p� pi)dp = 0 (40)

which indicates that the areas under the positive and negative segments are equal. De�ning the
area A gives

A =

Z
jJ
�
j dp (41)

and rewriting equation (39) by using equations (40) and (41) gives

J� (a; p� pi) = A

�
jJ+j

A
�
jJ
�
j

A

�

= A [F+ � F
�
] (42)

which de�nes the jump \probability" functions as F
�
(a; p� pi) = jJ

�
j =A.

The stochastic method is based on the following probabilistic interpretation. For the two
random variables X and Y , the joint probability P (X; Y ) is given by

P (X; Y ) = P (X jY )P (Y ) (43)
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where P (Y ) is the probability for the event Y and P (XjY ) is the conditional probability for
the event X , provided that event Y has occurred. Compare equation (43) with equation (42).
If A < 1, interpret P (Y ) = A as the probability for the quantum event, or as the creation
probability. In other words, only the test points selected randomly with probability P (Y )
undergo quantum events during each time interval. (That is, if A > 1, let A = n+ A, where n is
an integer, and A < 1. Then, the test point will undergo quantum events n times and P (Y ) = A
will determine whether an additional quantum event should take place.) Generally, a is small
enough (see �g. 2) to ensure that A < 1 so that, at most, one quantum event occurs per time
step.

The conditional probability P (X jY ) = F+ � F
�
represents the momentum jump probability

corresponding to the random variable X � p. A pair of values �p
�

is selected randomly by
using the cumulative distributions for F

�
. In the Monte Carlo representation, this becomes a

test pair with coordinates,

� (p� (pci +�p
�
)) � (x� xci)�i��

where �
�
= �1 for the positive and negative points. The newly created points are appended to

the initial set to undergo subsequent classical and quantum motions. If A � 1, a factor M is
introduced to enhance the creation probability toMA, with a normalization factor 1=M for the
new pairs.

Clearly, in the absence of the classical motion, the stochastic process is a Marko� process.
That is, with tn�1 < tn,

F fp (tn) � pn jp (t) ; t � tn�1g = F fp (tn) � pnj p (tn�1)g

The jump probability for each test point is thus independent of its past history, and depends
only on its present location in momentum space.

III. Validation of Stochastic Quantum Motion

The validity of the technique developed in the previous section is established by comparing
stochastic quantum time development in momentum space with analytic solutions. This is easily
done when the initial function is a Gaussian.

One-Dimensional Quantum Motion

The quantum time development for the interval t in the quasi-classical approximation is given
by

f (p; t) = e�at@
3
pf (p; 0) (44)

With the initial function given by

f (p; 0) =
1p
2��

e�p
2=2�2 (45)

the analytic solution is the Gaussian modi�ed Airy function given in appendix B.

For the stochastic evolution, a representative set of points for the initial function is chosen
as follows: A pair of values (pi; fi) is selected randomly within a speci�ed boundary for f and p
such that f lies well within the de�ned area. The function f varies from 0 to fmax = 1=(

p
2��).

If f(pi) < fi, then pi is selected; otherwise, it is discarded. Hence,

f (p; 0) � 2�

N

NX

i=1

��0 (p� pi) (46)
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where the test Gaussian functions have width �0 with �0 � �. By dividing the total time t

into K discrete time intervals (�t = t=K), the time development is written as

f (p; t) =
�
e�a�t @

3
p

�K
f (p; 0) (47)

During each time step, statistical test points are selected with pro bability A (see the discussion
following eq. (42)) and the new test pairs are created at p i +�p�, where values of �p� are
selected with conditional probability F� which get appended to the main list. The updated list
is propagated in the subsequent time interval.

In the actual algorithm, the momentum space is divided into grids and the test points are
assigned on it. With at = 0:1 and a�t = 0:001, 100 time steps are executed. The creation
probability is enhanced by an arbitrary factor M that is set at M = 10 000=N . Thus, for
100 initial test points the creation probability is increased 100 times; that is, the smaller the
number of initial points, the larger the number of pair creations. Each representative pair for
J�(a�t; p� pi) is therefore given by

1

M
[� (p� (pi +�p+))� � (p� (pi +�p�))]

For a density k on the grids, the process is repeated k times.

Figure 3 compares the results with the analytic solutions for various grid sizes, the initial
number of test points N , and for various Gaussian widths �0 for the test points. The results
show good agreement with the analytic solutions and appear to be independent of the variables.

Two-Dimensional Quantum Motion

The two-dimensional quantum motion is given by

f (p0; p1; t) = e�Lqtf (p0; p1; 0) (48)

where p0 and p1 are the radial and perpendicular components, respectively, and Lq is given by
equation (25) with aL=2 replaced by aL. The initial function is chosen to be

f (p0; p1; 0) =
1

2��2
exp

"
�
�
p20 + p2

1

�
2�2

#
(49)

To obtain the analytic solution, change the variables to v0 = p0 + p1, and v1 = p0 � p1. Thus,

ef (v0; v1; t) = 1

2��2

0
@e

�at@3v0e
�

v
2

0

4�2

1
A
0
@e�at@3v1e� v

2

1

4�2

1
A (50)

which is recognized as a product of one-dimensional forms. The inverse transformation is then
computed to get the analytic solution. (See �g. 4.)

For the stochastic evolution, consider the action ofLq on a test point during the subinterval �t

given by

J� (a�t;p� pi) = e�Lq�t� (p0 � p0i) � (p1 � p1i) (51)
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Transforming to variables v0 and v1 as before gives

J� (a�t;p� pi)! 2

�
e
�a�t @3v0��0 (v0 � v0i)

� �
e
�a�t@3v1��0 (v1 � v1i)

�

= 2 [J�0 (v0 � v0i) + ��0 (v0 � v0i)] [J�0 (v1 � v1i) + ��0 (v1 � v1i)] (52)

which to O(�t) gives

J� (a�t;p� pi) = 2 [J
�

0 (v0� v0i) ��0 (v1� v1i) + J
�

0(v1� v1i) ��0(v0� v0i) + �
�

0(v0� v0i) ��0(v1� v1i)]

(53)

because J�0 is of O(�t). The pair selection for each J�0 is done as before and the representative
test pairs are

� (v1 � v1i) � (v0 � (v0i +�v0�)) ���i + � (v0 � v0i) � (v1 � (v1i +�v1�)) ���i

Note that two pairs are created for each event expressed by the two summations. Transforming
back to the original coordinates gives the representative test pairs

�

�
p0�

�
p0i+

�v0�

2

��
�

�
p1�

�
p1i+

�v0�

2

��
���i+ �

�
p0�

�
p0i+

�v1�

2

��
�

�
p1�

�
p1i�

�v1�

2

��
���i

Figures 5(a) and 5(b), which show the results for stochastic simulation, compare well with
�gures 4(a) and 4(b), respectively. As before, 100 time steps were executed, and the pair creation
probability was enhanced by a factor of 20 by using an initial number of 10 000 test points. The
e�ect of increasing the width parameter �0 on the simulation is seen by comparing �gures 5(a)
and 5(b) with �gures 5(c) and 5(d). The e�ect of increasing grid size is seen in comparing
�gures 5(a) and 5(b) with �gures 5(e) and 5(f). Although a 25-percent increase in width �0 has
little e�ect on the solution, the use of a 33-percent larger grid lowers the distribution peaks, as
can be seen when comparing �gure 5(f) with �gure 5(b).

Three-Dimensional Quantum Motion

The three-dimensional quantum motion is given by

f (p; t) = e�Lqtf (p; 0) (54)

The initial Gaussian function may be written in terms of parallel and perpendicular components.
Thus,

f (p; 0) =
1�p
2��

�3 exp
2
4
�
p20 + p�2

?

�
2�2

3
5 (55)

Similarly, from appendix A,
Lq = aL @3p0

+ aT @p0 @
2
p?

(56)

Hence, the analytic solution is similar to the two-dimensional case on a plane de�ned by p0
and p?. For the stochastic time development, consider Lq acting on a test point during time
interval �t. Thus,

J (p � pi) = e
�Lq2�t

e
�Lq1�t

� (p0 � p0i) � (p1 � p1i) � (p2 � p2i) (57)

where Lq1 and Lq2 are given by equations (25) and (26), respectively. The sample set generated
by Lq1 and Lq2 acting successively on the test point creates four new pairs to O(�t).

9



The operator Lq1
generates two sets of pairs as in the two-dimensional case that can be

written succinctly as

2X

j 6=i=1

�

�
p0 � p0j

�
�

�
p1 � p1j

�
� (p2 � p2i)�i�j�

Similarly, Lq2
acting on �(p� pi) generates the set,

2X

j 6=i=1

�

�
p0 � p0j

�
�

�
p2 � p2j

�
� (p1 � p1i)�i�j�

Figure 6 shows the results for the (p0 ;p1) plane. The comparison with analytic solutions (�g. 4)

is remarkably good even with 10 000 initial test points. Also, by choosing a�t = 0:01, only

10 time steps are required.

IV. Application in Two-Dimensional Phase Space

The full quantum motion, namely the classical evolution followed by the quantum jumps, is

applied to an arbitrary initial state in an anharmonic quartic potential:

V (x) =
1

2

�
x
2 + kx

4

�
(58)

Note that this potential provides an exact description of the quantum e�ects within the quasi-

classical approximation as all higher order terms vanish. The problem is �rst studied in two-

dimensional phase space to validate the technique with exact solutions calculable by standard

numerical techniques. The power of the technique developed herein lies in its direct applicability

to higher dimensions and to many-body systems.

The initial Wigner functions are chosen from a class of functions represented by

f (x; p; 0) = 2 exp
n
��

h
(x� x0)

2
� (p� p0)

2

io
(59)

such that f! = �f , where the parameter � de�nes arbitrary admixtures of states. The examples

considered have x0 = 0, and p0 = 1. (See �g. 7 for � = 0:25.) With � = 1, the Wigner function

corresponds to a minimum wavepacket that is a pure state. (See eq. (7).) For � < 1 the function

therefore describes a mixture of states. Obviously, � > 1 is not allowed because of the uncertainty

relations �x�p � 1

2
.

The algorithm is based on the following complex of procedures using C-language. The initial

set of test points is assigned to a �ne mesh of phase-space grids. A list of structures is constructed,

each structure containing the data corresponding to the coordinates of the grid, the density, and

the sign of the test points. Only the nonempty grids form the list. For the classical motion

with mass m = 1, the coordinate data are updated by using a two-step second-order Runge-

Kutta method. This computation can be as accurate as desired and does not involve a grid

approximation. A high degree of accuracy is essential for the classical motion.

To implement the quantum event, all test points within a particular region in position space

having all possible momentum values are identi�ed by sorting. (To facilitate sorting, the list

is constructed at two levels. The �rst level, which consists of structures for a coarse x-grid,

forms the main trunk. From each unit on the trunk, a branch containing all the structures that

fall within that unit are attached. The second-level structures contain the actual data.) The

10



selected set is then allowed to undergo one-dimensional quantum jumps. (See section III.) The
cumulative distribution for F

�
(a;p) is tabulated for various values of a. The required value of a

is computed at the coarse x-grid location via a = [V 000(x)�t]=24. The net sum of newly formed
test points is attached to the main list. The entire x-space is spanned in this manner.

With low creation probabilities and the annihilation of pairs of opposite signs within the
assigned grid spacing for quantum motion, the main list does not increase exponentially and
remains tractable. The initial number of test points (N) was taken to be 20 000, which formed
an initial list size of approximately 4000 and grew to a size of approximately 15 000 at the end
of t = 4�. The enhancement factor M was chosen as M = 5 with the grid size (annihilation
distance) set at approximately 0.3. The test points were given Gaussian width �0 = 0:4. The
function is reconstructed at the required time intervals from the test points by using a suitable
set of orthonormal harmonic oscillator test functions. On a micro VAX-4000 series computer
(manufactured by Digital Equipment Corporation), the run time for the 0{� time segment was
typically 5 minutes, but for the 0{4� time segment it was approximately 40 minutes because of
the increasing list size.

An earlier version of the algorithm was written in PL/I language (ref. 10). One complicated
feature of the algorithm was the task of keeping track of the four nearest neighbors of a moving
sample test point in order to facilitate sorting and annihilations of the newly created pairs with
their nearest neighbors having opposite signs. The algorithm developed here has proven to be
faster and more accurate.

V. Results and Discussion

Snapshots of the motion at time intervals in units of � are shown in �gures 8{14 for various
initial Wigner functions and for various strengths of the potential. Each time unit is subdivided
into 30 time steps. The results are compared both with the exact solution calculated by standard
numerical techniques (ref. 10) and with the solutions of the classical Liouville equation.

The following observations can be made regarding the classical motion versus the quantum
motion. For the classical motion, the volume of phase space occupied by the system (an integral
invariant of Poincar�e) remains constant (ref. 17), but it streams out into all phase-space regions
allowed by energy conservation, with the occupied phase-space region developing whorls and
tendrils. (See �g. 14.) After long intervals of time, this spread gives the appearance of a uniform
distribution over a coarse grid, although �ner grids would reveal the �ne detail of the contour
levels as they are the classical solutions shown in �gures 8{14 (part (a)). For the quantum
motion, however, the system maintains a cohesiveness as the unit oscillates within the potential
well. This cohesion is the result of quantum interference e�ects arising from the oscillations of
the Airy functions, thus causing cancellations and reinforcements over the classical motion.

Quantitative di�erences for the pure state (� = 1) and the mixed state (� < 1) quantum
motions are also evident. For the pure state motion, the maximum height of the Wigner function
is observed to remain unchanged. However, the mixed-state motion shows a \quantum focusing"
e�ect as the Wigner function peaks beyond its initial maximum. Clearly, classical motion does
not allow for such e�ects resulting from the Liouville theorem, which states that the density
of systems in the neighborhood of some given system in phase space remains constant in time
(ref. 17).

Finally, as an example of computation of an observable quantity, the averages of x and p are
shown in �gure 15, where

< x >= (2�)�1
Z

dx dpfw (x; p; t)x (60)
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< p >= (2�)�1
Z

dx dpfw (x; p; t) p (61)

The averages are plotted both for the purely classical and the full quantum motion. For the

classical motion, the system distributes uniformly around the equilibrium point, consistent with

energy conservation, and the �rst moments of the distribution approach zero at late times. For

the quantum motion, however, these moments are oscillatory with �nite amplitude, an indication

of a preservation of structural unity over long intervals of time.

Statistical uctuations are inherent in any Monte Carlo simulation. By increasing the number
of initial test points, these uctuations can be made negligible and a single computer run then

becomes su�cient for accuracy. In conclusion, the method pursued in this work shows great

promise for application to multidimensional problems in which other numerical procedures may

prove to be di�cult.

VI. Concluding Remarks

The quantum Liouville equation in the Wigner representation is solved numerically by

using Monte Carlo methods. For incremental time steps, the propagation is implemented as

a classical evolution in phase space modi�ed by a quantum correction. The correction, which is

a momentum jump function, is simulated in the quasi-classical approximation via a stochastic

process. In this paper the technique, which is developed and validated in two- and three-

dimensional momentum space, extends an earlier one-dimensional work. Also, by developing a

new algorithm, the application to bound state motion in an anharmonic quartic potential shows

better agreement with exact solutions in two-dimensional phase space.

Work is well under way toward the development of a code to a six-dimensional case for

application to potential scattering problems and low-energy barrier penetration. Future work

will involve extensions to few-body scattering and the inclusion of quantum statistics to account

for the Pauli blocking e�ects of spin one-half fermion systems. These are long-term projects,
but a beginning has been made.

NASA Langley Research Center

Hampton, VA 23681-0001

November 23, 1993
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Appendix A

Quantum Evaluation Operator

In this appendix we expand Lq in terms of the radial component p0 and the perpendicular

components p1 and p2 of the momentum. For this we evaluate

Q = V (r)

�
 �
rx �
�!
rp

�
3

� (p) = V (r)
1

(2�)3

Z �
 �
rx � y

�
3

eip�ydy

in terms of parallel (0) and perpendicular (?) components to get

rx �

�
ber@r;be?@?

r

�

y � (bery0;be?y?)

Using the relations

@?y0 = y? @?y? = �y0

gives

(rx � y)V (r) = V 0y0

(rx � y)
2 V (r) = V 00y2

0
+

V 0

r
y2
?

(rx � y)
3 V (r) = V 000y3

0
+ 3 @r

�
V 0

r

�
y0y

2

?

Q =
1

(2�)3

Z �
V 000y3

0
+ 3 @r

�
V 0

r

�
y0y

2

?

�
eip�ydy =

�
V 000@3p0 + 3 @r

�
V 0

r

�
@p0 @

2
p
?

�
� (p)

Hence,

Lq =
1

24

�
V 000 @3p0 + 3 @r

�
V 0

r

�
@p0 @

2
p?

�
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Appendix B

Expressions for Modi�ed Airy Functions J�

Expressions for the damped Airy functions are obtained in this appendix. The expression to
be evaluated is

J� (a;p) = e
�a@3p �� (p)

where

�� (p) =
1p
2��

e�p
2=2�2

The results are presented here. For details, see reference 10 where the evaluation is done by
using the method of steepest descent (ref. 18).

Series Expansion for a� 1

Using the series expansion for e�a@
3
p and applying the Rodrigues formula gives

J� (a; p) = �� (p)
X

n

an

n!
�p

2�
�3n H3n

�
pp
2�

�

where H is the Hermite polynomial.

Asymptotic Evaluation for p!1
If the aforementioned expression is rewritten using the integral representation for a Gaussian

function

�� (p) =
1p
2��

Z
1

�1

dy exp

 
i
p
2py

�� y2

!

the result is

J� (a; p) = Re

p
2 jp0j
��

Z
1

0

dy exp

"��p0��3=2
 
ia0y3 � y2p

jp0j � iy

!#

where

p0 =

 p
2

�

!
p a0 =

 p
2

�

!
3

a

The integral is evaluated by the method of steepest descent in the complex plane. If we de�ne

f (z) = ia0z3 � z2p
jp0j � iz

where z is a complex number, the saddle points occur at

z0 =
�2i

6a0
p
jp0j

h
1� �1 + 3a0p0

�1=2i

The integral is evaluated independently along di�erent paths for two cases, and the resulting
expressions are given as follows:
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For 1 + 3a0p0 > 0,

J� (a; p) = Re
1p
2��

exp
h��p0��3=2 f (z0)

i 1X
n=0

�
ia0
�
n
� [(3n+ 1) =2]

n! j1 + 3a0p0j(3n+1)=4

For 1 + 3a0p0 < 0,

J� (a; p) = Re

p
2

��
exp

���p0��3=2 f (z0) +
i�

4

� 1X
neven=0

�
ia0e3i�=4

�
n

� [(3n+ 1) =2]

n! j1 + 3a0p0j(3n+1)=4

In the region (1 + 3a0p0) � 0 with 3a0p0 < 0, the resulting expressions are given as follows:

For 1 + 3a0p0 > 0,

J� (a; p) = Re

p
2

3��
exp

���p0��3=2 f (z0) +
i�

6

�
1X
n=0

h
�
�
1 + 3a0p0

�1=2
ei�=3

in
� [(2n+ 1) =3]

n!a0
(2n+1)=3

For 1 + 3a0p0 < 0,

J� (a; p) = Re

p
2

3��
exp

h��p0��3=2 f (z0)
i 1X
n=0

�
1 + 3a0p0

�
n=2

� [(2n+ 1) =3]

n!a0
(2n+1)=3

�
�
exp

�
i

�
n+

1

2

�
�

3

�
+ exp

�
i

�
n +

1

2

�
�

��
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Figure 1. Typical Gaussian-modi�ed Airy function and corresponding quantum jump function
for a = 0:05 and 0.1 and � = 0:3.
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Figure 3. Stochastic evolution of jump function J�(a;p) after 100 time steps compared with
analytic solution (solid line) at a = 0:1 and � = 1 for various grid sizes.
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Figure 5. Continued.
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Figure 5. Concluded.
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�0 = 0:3 at t = � for a pure state. The symbols x and p denote the position and momentum
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Figure 12. Contour plots of f!=� at levels of 0.5, 1.0, and 1.5 for � = 0:5, k = 0:5,
Grid size = 0:3, and �0 = 0:3 at t = 3� for a mixed state. The symbols x and p denote
the position and momentum coordinates, respectively.
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Figure 13. Contour plots of f!=� at levels of 0.5, 1.0, and 1.5 for � = 0:5, k = 0:5,
Grid size = 0:3, and �0 = 0:3 at t = 4� for a mixed state. The symbols x and p denote
the position and momentum coordinates, respectively.
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Figure 15. First moments ofWigner distribution function (<x>;<p>) with k = 0:5 and � = 0:5

over a period of time 0{4�. The cross (+) on the curves follows equal intervals of time.
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